

Stabilization Site Layout

S Pile #2

S Pile #3 PAD # 4 -- 2% cement + 4% Fly Ash

Gate

Equipment Parking Area

PAD # 2 -- 2% cement + 2% Fly Ash

PAD # 3 -- 6% cement

PAD # 1 -- 1.5% cement

S Pile #1

Office trailer

Cement Stabilization Process Diagram

Treatment Cell Construction

Constructed Cell

POLA Anchorage Road Dredged Material Storage Area

Dredged Material Transfer From Storage Area to Treatment Cell

Water Addition in **Treatment Cell**

Water Addition and Blending

Debris Removal

Removed Debris

Pre-Treat Material Sampling

Sample Compositing

Reagent Introduction

Mixing by Mixer

Post-Mixing Initial Curing

Initial-Cured Material

Excavation and Transfer of Treated Material for Stockpiling

Stockpiling

Compaction

Disked Compaction Layer

Testing Matrix

Matrix	Chemical Tests					Geotechnical Tests									
	Bulk Chemistry	Leach: SPLP	Leach: WET	Leach: MLT	Water Chemistry	Atterberg Limits	Grain Size	Soil Classification	Moisture Content	Compaction	Unconfined Compressive Strength	Direct Shear	Consolidation	Permeability	R-Value
Raw Material	•	•	•	•			•	•	•	•					
Initial-Cured Material						•	•	•	•	•					
7-Day-Cured Material											•	•			
28-Day-Cured Material		•	•	•		•	•	•	•		•	•	•	•	•
Binder Slurry Water (Fresh Water)					•										
Raw Material Additional Water (Seawater)					•										

- Grain Size
 - Coarsening after treatment (more apparent with increasing binder content)
 - Reduction in fines by 8-19% (clay cemented to larger particles)
 - Gravel fractions created in cured, compacted material (compaction effect; represents field condition)

- Atterberg Limits and Soil Classification
 - Liquid and plastic limits (LL, PL) increase with higher binder content
 - LL and PL increase with cure time (more apparent with higher binder content)
 - Sandy silt (inorganic silts, very fine sands, silty/clayey fine sands)

Moisture Content

- Reduced by 3.7% in first 12-24 hours, and 32% in next 27 days
- Initial drying rate >3.7% per day. Average drying rate 1.2% per day

- Compaction
 - Maximum dry density slightly decreases and optimum moisture content increases immediately after treatment (reasons unknown)
 - Compatibility of freshly treated material comparable to that of raw material; mid-range among typical soils

Unconfined Compressive Strength

- Strength increases with binder content
- Large percent (72%) of final strength developed during later part (7-28 days) of curing period
- Portland cement more effective than fly ash in increasing strength
- Higher binder content (e.g.>5-6% cement)needed for unconfined application (UCS>39 ton/m²)

- Shear Strength
 - Strength and friction angle increases, cohesion decreases with increasing binder content and curing time (correlate well with coarsening)
 - Portland cement more effective than fly ash in increasing strength (consistent with UCS findings)

Consolidation

- Settlement consistently decreases with increasing binder content
- Fly ash particularly effective in reducing settlement

- Permeability
 - Permeability generally decreases with increasing binder content (accounting for moisture/dry density differences among samples; trend weak)
 - Fly ash effective in reducing permeability

R-Value

R-value increases with binder content

- Summary
 - Treated material tends to coarsen
 - Treated material exhibits consistent, pronounced increase in strengths (UCS and shear) and decrease in settlement and lateral deformation
 - Permeability, plasticity, and compaction patterns less certain from data

- Raw Sediment Chemistry
 - 4,4'-DDE and 4,4'-DDT exceed ER-M
 - Lead, mercury, zinc, PCBs, PAHs, chlordane exceed ER-L
 - Four cells similar in chemical characteristics
 - Lead, mercury, zinc as target constituents for treatment (common in dredged material; prior experience used as guide for binder and mix ratio selection)

Process Water

Mostly non-detect except for metals at low levels

- SPLP and WET Leach Tests
 - Successful in binding zinc, lead, and cadmium
 - (zinc by 1-2 orders of magnitude; lead and cadmium to below detection limits)
 - Some metals mobilized (can not bind all at single pH; method metal-specific)
 - Ability to bind organics uncertain
 - Certain irregularities in solubility-pH relationship (effects of differences in sample gradation, etc.)

- Monolithic Leach Test (MLT)
 - NaCl selected for high solubility and threat to groundwater for upland placement. MLT selected for approximating field conditions.
 - 53% reduction in leached NaCl at 5.7% cement (minimal leach expected with higher, more common field range of mix ratios)
 - Leach of any constituents lower than predicted by SPLP/WET under field conditions (NaCl as a highly soluble tracer)

Cost

Full Scale Cost = \$46/m³

- Dredge 100,000 m³
- Treat in 5 cells at 4,000 m³/day for 25 days
- Place at receiver site within 4 miles

Conclusion

Effectiveness

- Enhances engineering properties
- Reduces leachability of targeted metals and chlorides
- Contaminant-specific. Bench necessary for binder/mix ratio design

Conclusion

- Implementability
 - Proven implementable in the Region
 - Full-scale project site to be selected
 opportunistically due to short period of usage
 - Receiver site needs be identified

Conclusion

- Environmental Impact
 - Escape of volatiles during treatment not expected to be significant based on field observation. Quantification of volatilization requires further study.
 - Impact from spill not expected with rigorous implementation of Spill Prevention Plan

Lessons Learned

- Success of method relies on identification of targets. Bench necessary before project
- Ability to treat organics uncertain. Method not appropriate for material with high organic contaminant levels
- Binder in slurry form desirable to minimize emission
- Mix ratio may impact schedule and cost through setting time. Optimize.

